Consumption of meat is associated with higher fasting glucose and insulin concentrations regardless of glucose and insulin genetic risk scores: a meta-analysis of 50,345 Caucasians. American Journal of Clinical Nutrition.

Abstract

Recent studies suggest that meat intake is associated with diabetes-related phenotypes. However, whether the associations of meat intake and glucose and insulin homeostasis are modified by genes related to glucose and insulin is unknown.

We investigated the associations of meat intake and the interaction of meat with genotype on fasting glucose and insulin concentrations in Caucasians free of diabetes mellitus.

Processed meat was associated with higher fasting glucose, and unprocessed red meat was associated with both higher fasting glucose and fasting insulin concentrations after adjustment for potential confounders [not including body mass index (BMI)]. For every additional 50-g serving of processed meat per day, fasting glucose was 0.021 mmol/L (95% CI: 0.011, 0.030 mmol/L) higher. Every additional 100-g serving of unprocessed red meat per day was associated with a 0.037-mmol/L (95% CI: 0.023, 0.051-mmol/L) higher fasting glucose concentration and a 0.049-ln-pmol/L (95% CI: 0.035, 0.063-ln-pmol/L) higher fasting insulin concentration. After additional adjustment for BMI, observed associations were attenuated and no longer statistically significant. The association of processed meat and fasting insulin did not reach statistical significance after correction for multiple comparisons. Observed associations were not modified by genetic loci known to influence fasting glucose or insulin resistance.